Непрерывные и дискретные математические модели. Дискретные и непрерывные модели Детерминированные и стохастические модели

Предварительные замечания. Рассмотрим многомерную систему автоматического управления, где в качестве регулятора используется БЦВМ, связанная с непрерывным объектом с помощью ЦАП и АЦП (рис.1.4). Будем считать, что измеряемый векторный выход объектаквантуется с помощью АЦП в моментытак, что на входе БЦВМ действует векторная решётчатая функция. В БЦВМ реализуется определённый алгоритм управления и на её выходе формируется последовательность дискретных значений управляющих воздействий, которую также можно рассматривать как векторную решётчатую функцию. Здесь для простоты положим, что разрядность ЦАП и АЦП достаточно высока, так что эффектом квантования по уровню можно пренебречь.

Пусть непрерывный объект представляется дифференциальными уравнениями в форме Коши

(2.4.1)

где –числовые матрицы соответствующих размеров.

Будем считать, что ЦАП и АЦП работают синхронно (с одинаковым периодом), но не синфазно, и пусть выдача рассчитанных управлений производится с задержкой на, где–относительное запаздывание, так что на ЦАП поступает смещённая решётчатая функция. Таким образом, эквивалентная схема принимает вид рис.2.5.

Рис. 2.5.

Очевидно, что непрерывный объект управления (2.4.1) совместно с ЦАП, АЦП и звеном задержки можно рассматривать как некоторую эквивалентную дискретную систему, на входе и выходе которой действуют решётчатые функцииисоответственно. Как и в случае импульсных систем, разностные уравнения, описывающие эту систему, должны быть такими, чтобы их решения относительно переменных выхода и состояний совпадали прис соответствующими непрерывными функциями. Эти разностные уравнения как раз и будут являться дискретной моделью непрерывного объекта в системе управления с БЦВМ в контуре. Причём, эта модель, очевидно, будет зависеть от способа восстановления непрерывного процессапо его дискретам.

Применение экстраполяции нулевого порядка. Пусть операция ЦА-преобразования сопровождается формированием управленияметодом фиксации на период (экстраполяция нулевого порядка). Тогда функциябудет кусочно-постоянной (рис.2.6), удовлетворяющей условию

Для определения дискретной модели объекта (2.4.1) при условии (2.4.2) рассмотрим -ый интервал дискретности.

Рис. 2.6.

В соответствии с рис.2.6, этот интервал можно разбить на два под-интервала. На первом подинтервале, когда, на объект действует постоянное управление, а на втором – постоянное управление. Учитывая сказанное и используя формулу Коши (2.3.3), определим состояниев конце интервала по известному состояниюв начале интервала. Будем иметь

Преобразуем это выражение, используя для первого интеграла замену , а для второго –. Тогда после преобразований и перехода к решётчатым функциям получим

Обозначим

и учтём, что квантование выхода производится в моменты. Тогда окончательно, искомая дискретная модель примет вид

. (2.4.4)

Анализируя формулы (2.4.3), заметим, что матрицы изависят от величины запаздывания. Так, если(запаздывание отсутствует), тои мы получим дискретную модель непрерывного объекта без запаздывания. Если же, то, и тогда уравнения (2.4.4) будут представлять дискретную модель с "чистым" запаздыванием на один такт.

Отметим также, что при разностные уравнения (2.4.4) формально не являются уравнениями в форме Коши, так как в правой части первого уравнения присутствует переменная, сдвинутая на один такт по отношению к другим. Для устранения этого "недостатка" введем вектор дополнительных состояний , . Тогда нетрудно показать, что расширенная дискретная модель с вектором состояний , представится в следующем эквивалентном виде

(2.4.5)

где - новый вектор измеряемых переменных объекта, расширенных за счет управлений из предыдущего такта.

Таким образом наличие запаздывания привело к увеличению размерности дискретной модели по сравнению с размерностью непрерывного объекта. Это позволяет учесть запаздывание при синтезе алгоритмов работы БЦВМ (дискретных регуляторов), так как формально уравнения (2.4.5) представляют дискретную модель объекта без запаздывания, но повышенной размерности.

Применение экстраполяторов -го порядка. При рассмотрении этого вопроса для простоты ограничимся случаем . Кроме того, также для простоты, будем считать, что управлениеявляется скалярным (). Тогда, если для реализации этого управления используется метод экстраполяции-го порядка, то на интервалеуправлениебудет определяться выражением (1.4.10), то есть

, (2.4.6)

где производные () могут быть вычислены по дискретам,в соответствии с алгоритмом (1.4.16).

Переходя к определению дискретной модели непрерывного объекта (2.4.1) запишем состояние этого объекта в конце-го интервала дискретности по известному состояниюв начале интервала. Используя формулу Коши, будем иметь

.

Подставляя (2.4.6) и производя замену , после преобразований и перехода к решетчатым функциям, получим

Здесь учтено, что значения производных остаются постоянными в течение каждого интервала дискретности. Обозначим

,,.

Тогда (2.4.7) примет вид

.

Введем матрицу . Тогда, если использовать обозначение (1.4.12) для вектора, получим

где - определяется выражением (1.4.14), а- обозначает-мерный вектор (1.4.12), составленный из дискрет.

Обозначим столбцы матрицы через. Тогда учитывая структуру вектора, окончательно получим искомую дискретную модель

. (2.4.9)

Заметим, что несмотря на то, что по предположению управляющее воздействие формируется без задержки по отношению к моментам съема информации, дискретная модель (2.4.9) содержит запаздывания по управлению натактов одновременно. Как уже отмечалось в разделе 1.4, этот факт обусловлен использованием для формирования управленияэкстраполяции-го порядка.

Запишем полученную модель в эквивалентной форме с помощью расширенного состояния. Для этого введем вспомогательные переменные

Очевидно, что в этом случае

Тогда, если ввести вектор расширенного состояния

а также новый вектор измеряемых переменных

расширенный за счет управлений из предыдущих тактов, то (2.4.9) можно представить в следующем эквивалентном виде

, (2.4.10)

где ,,- матрицы размеров,,соответственно, имеющие следующую блочную структуру

, ,. (2.4.11)

Уравнения (2.4.10) представляют дискретную модель непрерывного объекта в системе управления с БЦВМ и экстраполятором -го порядка. Эта модель составлена для скалярного управления, и учет экстраполятора привел к тому, что ее размерность увеличилась напо сравнению с размерностью непрерывного объекта. Очевидно, что если рассматривать случай векторного управления, то формально дискретная модель (2.4.10) останется без изменения, но вводимые дополнительные переменныестанут векторными и общая размерность модели составит.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Введение

Термин модель неоднозначен и охватывает чрезвычайно широкий круг материальных и идеальных объектов. Признаком, объединяющим такие, казалось бы, несопоставимые объекты как система дифференциальных уравнений математической физики и пара дамских туфель, выставленных на витрине, является их информационная сущность. Любая модель - идеальная или материальная, используемая в научных целях, на производстве или в быту - несет информацию о свойствах и характеристиках исходного объекта (объекта - оригинала), существенных для решаемой субъектом задачи. Модели - отражение знаний об окружающем мире.

Модель в общем смысле есть создаваемый с целью получения и (или) хранения информации специфический объект (в форме мысленного образа, описания знаковыми средствами либо материальной системы), отражающий свойства, характеристики и связи объекта - оригинала произвольной природы, существенные для задачи, решаемой субъектом.

1. Общие признаки и свойства моделей

Общие признаки моделей

1. Модель представляет собой «четырехместную конструкцию», компонентами которой являются субъект; задача, решаемая субъектом; объект-оригинал и язык описания или способ воспроизведения модели. Особую роль в структуре обобщенной модели играет решаемая субъектом задача. Вне контекста задачи или класса задач понятие модели не имеет смысла.

2. Каждому материальному объекту соответствует бесчисленное множество в равной мере адекватных, но различных по существу моделей, связанных с разными задачами.

3. Паре задача-объект соответствует множество моделей, содержащих в принципе одну и ту же информацию, но различающихся формами ее представления или воспроизведения.

4. Модель всегда является лишь относительным, приближенным подобием объекта-оригинала и в информационном отношении принципиально беднее последнего.

5. Произвольная природа объекта-оригинала, фигурирующая в принятом определении, означает, что этот объект может быть материально-вещественным, может носить чисто информационный характер и, наконец, может представлять собой комплекс разнородных материальных и информационных компонентов. Однако независимо от природы объекта, характера решаемой задачи и способа реализации модель представляет собой информационное образование.

6. В частном случае роль объекта моделирования в исследовательской или прикладной задаче играет не фрагмент реального мира, рассматриваемый непосредственно, а некая идеальная конструкция, т.е. по сути дела другая модель, созданная ранее и практически достоверная.

Свойства моделей

1) конечность: модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;

2) упрощенность: модель отображает только существенные стороны объекта;

3) приблизительность: действительность отображается моделью приблизительно;

5) информативность: модель должна содержать достаточную информацию о системе - в рамках гипотез, принятых при построении модели.

2. Материальные и идеальные модели

Классификация моделей

Каждая модель характеризуется тремя признаками:

1) принадлежностью к определённому классу задач (по классам задач);

2) указанием класса объектов моделирования (по классам объектов);

3) способом реализации (по форме представления и обработки информации).

Рассмотрим более подробно последний вид классификации. По этому признаку модели делятся на материальные и идеальные.

1 Материальные модели:

1.1 геометрически подобные масштабные, воспроизводящие пространственно-геометрические характеристики оригинала безотносительно его субстрату (макеты зданий и сооружений, учебные муляжи и др.);

1.2 основанные на теории подобия, воспроизводящие с масштабированием в пространстве и времени свойства и характеристики оригинала той же природы, что и модель, (гидродинамические модели судов, продувочные модели летательных аппаратов);

1.3 аналоговые приборные, воспроизводящие исследуемые свойства и характеристики объекта оригинала в моделирующем объекте другой природы на основе некоторой системы прямых аналогий (разновидности электронного аналогового моделирования).

Рассмотрим более подробно два последних пункта. Для парохода правильный выбор обводов, подбор гребного винта и согласование с характеристиками винта и корпуса мощности и скорости вращения вала - проблема № 1. По существу речь идет о необходимости оптимизировать взаимодействие системы корпус - винт - двигатель с обтекающей судно жидкой средой по критерию максимального КПД. Решение проблемы опытным путем невозможно по экономическим соображениям, не поддается она и теоретическому решению. Выход был найден на пути синтеза теории масштабного гидродинамического моделирования, т.е. экспериментальное исследование малых геометрически подобных моделей проектируемых судов в специальных бассейнах на основе теории подобия. Теория обеспечивала возможность достоверного переноса данных, полученных на модели, на «натуру», на свойства и характеристики реального, но еще не существующего судна. И сегодня методы масштабного физического моделирования сохраняют свое значение.

Аналоговое моделирование основано на том, что свойства и характеристики некоторого объекта воспроизводятся с помощью модели иной, чем у оригинала физической природы. Целый ряд явлений и процессов существенно различной природы описывается аналогичными по структуре математическими выражениями. Описываемые аналогичными математическими структурами разнородные объекты можно рассматривать как пару моделей, которые с точностью до свойств, учитываемых в математическом описании, взаимно отображают друг друга, причем коэффициенты, связывающие соответственные (сходственные) параметры, являются в этом случае размерными величинами.

2 Идеальные модели

2.1 неформализованные модели, т.е. системы представлений об объекте оригинале, сложившиеся в человеческом мозгу;

2.2 частично формализованные:

2.2.1 вербальные - описание свойств и характеристик оригинала на некотором естественном языке (текстовые материалы проектной документации, словесное описание результатов технического эксперимента);

2.2.2 графические иконические - черты, свойства и характеристики оригинала, реально или хотя бы теоретически доступные непосредственно зрительному восприятию (художественная графика, технологические карты);

2.2.3 графические условные - данные наблюдений и экспериментальных исследований в виде графиков, диаграмм, схем;

2.2.4 вполне формализованные (математические) модели.

Основное отличие этого типа моделей от остальных состоит в вариативности - в кодировании одним знаковым описанием огромного количества конкретных вариантов поведения системы. Tак, линейные дифференциальные уравнения с постоянными коэффициентами описывают и движение массы на пружине, и изменение тока в колебательном контуре, и измерительную схему системы автоматического регулирования, и ряд других процессов. Однако еще более важно то, что в каждом из этих описаний одни и те же уравнения в буквенном (а вообще говоря, и в числовом) виде соответствуют бесконечному числу комбинаций конкретных значений параметров. Скажем, для процесса механических колебаний - это любые значения массы и жесткости пружины.

В знаковых моделях возможен дедуктивный вывод свойств, количество следствий в них обычно более значительно, чем в моделях других типов. Они отличаются компактной записью удобством работы, возможностью изучения в форме, абстрагированной от конкретного содержания. Все это позволяет считать знаковые модели наивысшей ступенью и рекомендовать стремиться к такой форме моделирования.

Заметим, что деление моделей на вербальные, натурные и знаковые в определенной степени условно. Так, существуют смешанные типы моделей, скажем, использующие и вербальные, и знаковые построения.

3. Непрерывные и дискретные математические модели

модель материальный скачкообразный дискретный

Будем предполагать, что возможно, хотя бы в принципе, установить и на некотором языке описания (например, средствами математики) охарактеризовать зависимость каждой из выходных переменных от входных. Связь между входными и выходными переменными моделируемого объекта в принципе может характеризоваться графически, аналитически, т.е. посредством некоторой формулы общего вида, или алгоритмически. Независимо от формы представления конструкта, описывающего эту связь, будем именовать его оператором вход-выход и обозначать через В.

Пусть М=М(X,Y,Z), где X - множество входов, Y - выходов, Z - состояний системы. Схематически можно это изобразить: X Z Y.

Рассмотрим теперь наиболее существенные с точки зрения моделирования внутренние свойства объектов разного класса. При этом придется использовать понятие структура и параметры моделируемого объекта. Под структурой понимается совокупность учитываемых в модели компонентов и связей, содержащихся внутри объекта, а после формализации описания объекта - вид математического выражения, которое связывает его входные и выходные переменные (например: у=au+bv). Параметры представляют собой количественные характеристики внутренних свойств объекта, которые отражаются принятой структурой, а в формализованной математической модели они суть коэффициенты (постоянные переменные), входящие в выражения, которыми описывается структура (а и b).

Непрерывность и дискретность.

Все те объекты, переменные которых (включая, при необходимости, время) могут принимать несчетное множество сколь угодно близких друг к другу значений называются непрерывными или континуальными. Подавляющее большинство реальных физических и теоретических объектов, состояние которых характеризуется только макроскопическими физическими величинами (температура, давление, скорость, ускорение, сила тока, напряженность электрического или магнитного полей и т.д.) обладают свойством непрерывности. Математические структуры, адекватно описывающие такие объекты, тоже должны быть непрерывными. Поэтому при модельном описании таких объектов используется главным образом, аппарат дифференциальных и интегро-дифференциальных уравнений. Объекты, переменные которых могут принимать некоторое, практически всегда конечное число наперед известных значений, называются дискретными. Примеры: релейно-контактные переключательные схемы, коммутационные системы АТС. Основой формализованного описания дискретных объектов является аппарат математической логики (логические функции, аппарат булевой алгебры, алгоритмические языки). В связи с развитием ЭВМ дискретные методы анализа получили широкое распространение также для описания и исследования непрерывных объектов.

Свойство непрерывности и дискретности выражается в структуре множеств (совокупностей), которым принадлежат параметры состояния, параметр процесса и входы, выходы системы. Таким образом, дискретность множеств Z, Т, Х, Y ведет к модели, называемой дискретной, а их непрерывность -- к модели с непрерывными свойствами. Дискретность входов (импульсы внешних сил, ступенчатость воздействий и др.) в общем случае не ведет к дискретности модели в целом. Важной характеристикой дискретной модели является конечность или бесконечность числа состояний системы и числа значений выходных характеристик. В первом случае модель называется дискретной конечной. Дискретность модели также может быть как естественным условием (система скачкообразно меняет свое состояние и выходные свойства), так и искусственно внесенной особенностью. Типичный пример последнего - замена непрерывной математической функции на набор ее значений в фиксированных точках.

Непрерывные математические модели

Для реализации ММ, представляемых ДУЧП или системами ОДУ, используются численные методы непрерывной математики, поэтому рассмотренные ММ называют непрерывными.

На рис. 1 показаны преобразования непрерывных ММ в процессе перехода от исходных формулировок задач к рабочим программам, представляющим собой последовательности элементарных арифметических и логических операций. Стрелками 1, 2 и 3 показаны переходы от описания структуры объектов на соответствующем иерархическом уровне к математической формулировке задачи. Дискретизация (4) и алгебраизация (5) ДУЧП по пространственным переменным осуществляются методами конечных разностей (МКР) или конечных элементов (МКЭ). Применение МКР или МКЭ к стационарным ДУЧП приводит к системе алгебраических уравнений (АУ), а к нестационарным ДУЧП--к системе ОДУ. Алгебраизация и дискретизация системы ОДУ по переменной t осуществляются методами численного интегрирования. Для нелинейных ОДУ (6) это преобразование приводит к системе нелинейных АУ, для линейных ОДУ (7) -- к системе линейных алгебраических уравнений (ЛАУ). Нелинейные АУ решаются итерационными методами. Стрелка 8 соответствует решению методом Ньютона, основанному на линеаризации уравнений, стрелка 9--методами Зейделя, Якоби, простой итерации и т. п. Решение системы ЛАУ сводится к последовательности элементарных операций (10) с помощью методов Гаусса или LU-разложения.

Рис. 1- Преобразования непрерывных математических моделей

Непрерывные ММ и используемые для их анализа методы вычислительной математики получили широкое распространение в САПР различных отраслей промышленности.

Создание методики автоматического формирования математических моделей систем позволило автоматизировать процедуры анализа и верификации широкого класса технических объектов. Инвариантный характер этой методики обусловил разработку на ее основе методов и алгоритмов, реализованных во многих ПМК проектирования электронных, механических, гидравлических, теплоэнергетических устройств и систем. Известны такие методы формирования ММ как узловой метод, контурный метод, метод переменных состояния.

Дискретные математические модели

Дискретной математической моделью называется модель, в которой выполнена дискретизация тех или иных переменных. Рассмотрим ММ, в которых дискретными являются зависимые переменные, характеризующие состояние моделируемого объекта.

Проектирование систем на функционально-логическом и системном уровнях основано на применении дискретных ММ. При моделировании в подсистемах функционально-логического проектирования принимаются те же допущения, что и при моделировании аналоговых систем на верхних уровнях. Кроме того, моделируемый объект представляется совокупностью взаимосвязанных логических элементов, состояния которых характеризуются переменными, принимающими значения в конечном множестве. В простейшем случае это множество {0, 1}. Непрерывное время t заменяется дискретной последовательностью моментов времени tк, при этом длительность такта. Следовательно, математической моделью объекта является конечный автомат (КА). Функционирование КА описывается системой логических уравнений КА

На системном уровне проектирования систем преимущественно распространены модели систем массового обслуживания (СМО). Для таких моделей характерно то, что в них отображаются объекты двух типов--заявки на обслуживание и обслуживающие аппараты (ОА). При проектировании ВС заявками являются решаемые задачи, а обслуживающими аппаратами--оборудование ВС. Заявка может находиться в состоянии «обслуживание» или «ожидание», а обслуживающий аппарат--в состоянии «свободен» или «занят». Состояние СМО характеризуется состояниями ее ОА и заявок. Смена состояний называется событием. Модели СМО используются для исследования процессов, происходящих в этой системе при подаче на входы потоков заявок. Эти процессы представляются последовательностями событий. По результатам исследования определяются наиболее важные выходные параметры системы: производительность, пропускная способность, вероятность и среднее время решения задач, коэффициенты загрузки оборудования.

Появление параллельных и конвейерных систем, необходимость моделировать процессы функционирования не только аппаратных, но и программных средств привело к появлению класса дискретных ММ, называемых сетями Петри. Сети Петри можно использовать для моделирования на функционально-логическом и системном уровнях проектирования широкого круга систем и сетей.

Сети Петри и СМО широко используются для описания функционирования производственных участков, линий и цехов, ориентированных на многономенклатурное производство изделий. Сети Петри -- эффективный инструмент разработки самих САПР. Эти сети могут служить моделями алгоритмов функционирования различных устройств дискретной автоматики.

Размещено на Allbest.ru

...

Подобные документы

    Процесс выбора или построения модели для исследования определенных свойств оригинала в определенных условиях. Стадии процесса моделирования. Математические модели и их виды. Адекватность математических моделей. Рассогласование между оригиналом и моделью.

    контрольная работа , добавлен 09.10.2016

    Приемы построения математических моделей вычислительных систем, отображающих структуру и процессы их функционирования. Число обращений к файлам в процессе решения средней задачи. Определение возможности размещения файлов в накопителях внешней памяти.

    лабораторная работа , добавлен 21.06.2013

    Возникновение и развитие теории динамических систем. Развитие методов реконструкции математических моделей динамических систем. Математическое моделирование - один из основных методов научного исследования.

    реферат , добавлен 15.05.2007

    Вводные понятия. Классификация моделей. Классификация объектов (систем) по их способности использовать информацию. Этапы создания модели. Понятие о жизненном цикле систем. Модели прогнозирования.

    реферат , добавлен 13.12.2003

    Динамическая модель как теоретическая конструкция, описывающая изменение состояний объекта. Характеристика основных подходов к построению: оптимизационный, описательный. Рассмотрение способов построения математических моделей дискретных объектов.

    контрольная работа , добавлен 31.01.2013

    Структурное преобразование схемы объекта и получение в дифференциальной форме по каналам внешних воздействий. Формы представления вход-выходных математических моделей динамических, звеньев и систем, методов их построения, преобразования и использования.

    курсовая работа , добавлен 09.11.2013

    Определение понятия модели, необходимость их применения в науке и повседневной жизни. Характеристика методов материального и идеального моделирования. Классификация математических моделей (детерминированные, стохастические), этапы процесса их построения.

    реферат , добавлен 20.08.2015

    Моделирование как метод научного познания, его сущность и содержание, особенности использования при исследовании и проектировании сложных систем, классификация и типы моделей. Математические схемы моделирования систем. Основные соотношения моделей.

    курсовая работа , добавлен 15.10.2013

    Признаки некоторых четырехугольников. Реализация моделей геометрических ситуаций в средах динамической геометрии. Особенности динамической среды "Живая геометрия", особенности построения в ней моделей параллелограмма, ромба, прямоугольника и квадрата.

    курсовая работа , добавлен 28.05.2013

    Примеры основных математических моделей, описывающих технические системы. Математическая модель гидроприводов главной лебедки и механизма подъема-опускания самоходного крана. Описание динамики гидропривода механизма поворота стрелы автобетононасоса.

ДИСКРЕТНЫЕ МОДЕЛИ, модели, переменные и параметры которых являются дискретными величинами, т. е. величинами, принимающими конечное или счётное число значений; в задачах, связанных с такими моделями, множество допустимых решений также дискретно. При построении и анализе дискретных моделей используются математические методы дискретной математики, алгебраические и другие известные математические методы, а иногда требуется разработка новых.

Дискретные модели возникают в связи со многими задачами в экономике, управлении, технике и других прикладных областях. Задачи дискретных моделей, как и алгоритмы их решения, носят, как правило, комбинаторный характер, что обусловлено конечностью множества возможных вариантов решений. Среди разработанных дискретных моделей можно выделить следующие основные классы: дискретные модели транспортного типа и планирования перевозок, сетевые и потоковые дискретные модели, дискретные модели управления запасами, дискретные модели размещения, дискретные модели теории расписаний, дискретные модели логического проектирования, дискретные модели распределения ресурсов, дискретные модели формирования производственных систем, дискретные модели ранжирования и кластеризации. В качестве отдельных классов дискретных моделей рассматриваются стохастические и динамические модели. Большое внимание уделяется разработке дискретных экономико-математических моделей.

При исследовании дискретных моделей часто рассматриваются дискретные экстремальные задачи, нерегулярные задачи различных типов, задачи с разрывными целевыми функциями, многоэкстремальные задачи, задачи теории графов, задачи о покрытиях.

Методы и алгоритмы решения дискретных задач обычно носят комбинаторный характер. Основная идея этих методов состоит в выделении и отсеве (отбрасывании) подмножеств допустимых решений, заведомо не содержащих оптимальных. Именно это составляет основу многих используемых в дискретных моделях алгоритмов. Наиболее часто применяются метод последовательного анализа вариантов, метод ветвей и границ, метод динамического программирования, метод последовательных расчётов, аппроксимационно-комбинаторный метод. Многие современные версии алгоритмов являются комбинированными, в рамках которых применяются элементы нескольких алгоритмов.

Лит.: Лихтенштейн В. Е. Модели дискретного программирования. М., 1971; Вагнер Г. Основы исследований операций: В 3 т. М., 1972-1973; Пропой А. И. Элементы теории оптимальных дискретных процессов. М., 1973; Финкельштейн Ю. Ю. Приближенные методы и прикладные задачи дискретного программирования. М., 1976; Моисеев Н. Н. Математические задачи системного анализа. М., 1981; Комбинаторные методы и алгоритмы решения задач дискретной оптимизации большой размерности. М., 2000; Сигал И. Х., Иванова А. П. Введение в прикладное дискретное программирование: Модели и вычислительные алгоритмы. М., 2002.

Лекция 1

Объектами изучения данного курса являются процессы и аппараты химической технологии.

Процессы химической технологии представляют собой физико-химические системы, которые характеризуются сложным взаимодействием фаз и компонентов. В ходе протекания технологических процессов в каждой точке фаз и на границе их раздела происходит перенос импульса, энергии или массы. Процессы химической технологии протекают в аппаратах, имеющих конкретные геометрические характеристики, которые в свою очередь, оказывают значимое влияние на течение процесса.

Для изучения различных физико-химических процессов, проверки научных гипотез и получения экспериментального материала издавна использовалось моделирование реальных объектов.

Моделированием называют исследование объекта путем создания и изучения его модели.

Моделирование является методом изучения объектов, при котором вместо объекта–оригинала исследование проводят на модели, а результаты исследования распространяют на объект–оригинал.

Различают два основных типа моделей – физические модели и математические модели. Соответственно, различают два метода моделирования: физическое и математическое.

Физическая модель в большинстве случаев представляет собой масштабированную копию реального объекта, которая сохраняет физическую природу протекающих в исследуемом объекте.

При использовании метода физического моделирования, должны выполняться два основных требования:

1. Эксперимент, проводимый на модели должен быть проще, экономичнее или безопаснее, эксперимента проводимого на реальном объекте.

2. Должны быть известны закономерности, связывающие модель и реальный объект.

Для объектов химической технологии такими закономерностями являются определённые соотношения, называемые критериями подобия: критерии Рейнольдса, Прандтля, Архимеда и т.д.

Согласно теории подобия необходимое физическое подобие модели и объекта обеспечивается при равенстве всех однотипных определяющих критериев подоби я.

Если количество рассматриваемых при изучении объекта явлений велико, то соответственно увеличивается необходимое количество определяющих критериев подобия. В таком случае бывает практически невозможно обеспечить равенство значений всех определяющих критериев подобия модели и объекта.

Отсюда следует, что возможности физического моделирования, основанного на теории подобия, существенно ограничены сложностью изучаемого объекта.

Для объектов, в которых физическое моделирование ограничено трудностями исследования, опасностью экспериментов, техническими сложностями или дороговизной создания физических моделей, используют математическое моделирование.

Математическая модель описывает процессы, происходящие в реальном объекте в символьном виде, т.е. в виде математических выражений.

Изучение объекта методом математического моделирования заключается в решении системы уравнений математического описания объекта.

Существуют различные виды математических моделей, которые можно условно классифицировать по следующим признакам:

1. По характеру временного описания:

непрерывные и дискретные.

Непрерывные модели позволяют получить характеристики объекта в каждый текущий момент времени;

дискретные модели позволяют получить характеристики объекта в фиксированной последовательности промежутков времени.

Дискретные и непрерывные модели.

Структурные и функциональные модели.

В случае если в моделях первого вида отражается структура (устройство) изучаемой системы, представляющая собой набор взаимосвязанных элементов системы, то в функциональных моделях внимание уделяется не описанию структуры системы, а количественному описанию того, как данная система реагирует на внешние воздействия. В этом случае полученную модель называют "черным ящиком". Структурные модели, как правило, строятся для хорошо структуризованных систем. Функциональные модели строятся, в основном, для хорошо структуризованных процессов. Возможно, так же сочетание этих двух видов моделœей, в результате чего может получиться гибридная модель, позволяющая описывать слабо структуризованные системы и процессы. Примером таких моделœей являются системно-динамические модели, предназначенные для описания эколого-экономических процессов. Структурные модели используются, к примеру, в теории фирмы при изучении монополии или потребительского выбора. Примером применения функциональных моделœей может служить теория производственных функций.

Такое делœение моделœей исходит из делœения всœех величин на дискретные, принимающих значения в конечном числе точек выбранного интервала и непрерывные, принимающие значения на всœем интервале. Конечно, возможен и промежуточный случай. Как правило, большинство математических моделœей допускают как дискретную, так и непрерывную интерпретацию. В случае если в дискретном случае описание моделœей ведется на языке сумм и конечных разностей, то в непрерывных моделях - на языке интегралов и бесконечно-малых приращений. В качестве примера дискретных экономико-математических моделœей можно привести широко распространенные модели, связанные с целочисленным программированием, математической теорией игр, сетевым планированием. К числу непрерывных моделœей относятся различные модели математической экономики, в том числе рыночного равновесия, многие оптимизационные модели.

Линœейные и нелинœейные модели. Такое делœение моделœей исходит от характера взаимосвязей между элементами системы. В случае если в линœейных моделях предполагается линœейная зависимость между переменными, описывающими модель, то в нелинœейных моделях присутствуют связи между элементами, задаваемые нелинœейными функциями. Примером использования линœейных и нелинœейных моделœей в экономике является решение задач линœейного и соответственно нелинœейного программирования. В случае если линœейными моделями, как правило, описываются простые системы, то нелинœейными моделями, к числу которых относится большинство системно-динамических моделœей, описываются сложные системы. Возможно, также выделœение смешанных моделœей, примером которых бывают слабо нелинœейные модели.